Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 178
Filtrar
1.
J Nutr Health Aging ; 28(5): 100203, 2024 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-38460315

RESUMO

OBJECTIVES: Hypertension, a key contributor to mortality, is impacted by biological aging. We investigated the relationship between novel biological aging metrics - Phenotypic Age (PA) and Phenotypic Age Acceleration (PAA) - and mortality in individuals with hypertension, exploring the mediating effects of arterial stiffness (estimated Pulse Wave Velocity, ePWV), and Heart/Vascular Age (HVA). METHODS: Using data from 62,160 National Health and Nutrition Examination Survey (NHANES) participants (1999-2010), we selected 4,228 individuals with hypertension and computed PA, PAA, HVA, and ePWV. Weighted, multivariable Cox regression analysis yielded Hazard Ratios (HRs) relating PA, PAA to mortality, and mediation roles of ePWV, PAA, HVA were evaluated. Mendelian randomization (MR) analysis was employed to investigate causality between genetically inferred PAA and hypertension. RESULTS: Over a 12-year median follow-up, PA and PAA were tied to increased mortality risks in individuals with hypertension. All-cause mortality hazard ratios per 10-year PA and PAA increments were 1.96 (95% CI, 1.81-2.11) and 1.67 (95% CI, 1.52-1.85), respectively. Cardiovascular mortality HRs were 2.32 (95% CI, 1.97-2.73) and 1.93 (95% CI, 1.65-2.26) for PA and PAA, respectively. ePWV, PAA, and HVA mediated 42%, 30.3%, and 6.9% of PA's impact on mortality, respectively. Mendelian randomization highlighted a causal link between PAA genetics and hypertension (OR = 1.002; 95% CI, 1.000-1.003). CONCLUSION: PA and PAA, enhancing cardiovascular risk scores by integrating diverse biomarkers, offer vital insights for aging and mortality evaluation in individuals with hypertension, suggesting avenues for intensified aging mitigation and cardiovascular issue prevention. Validations in varied populations and explorations of underlying mechanisms are warranted.

2.
Adv Mater ; : e2311472, 2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38421081

RESUMO

Human-machine interaction (HMI) technology has undergone significant advancements in recent years, enabling seamless communication between humans and machines. Its expansion has extended into various emerging domains, including human healthcare, machine perception, and biointerfaces, thereby magnifying the demand for advanced intelligent technologies. Neuromorphic computing, a paradigm rooted in nanoionic devices that emulate the operations and architecture of the human brain, has emerged as a powerful tool for highly efficient information processing. This paper delivers a comprehensive review of recent developments in nanoionic device-based neuromorphic computing technologies and their pivotal role in shaping the next-generation of HMI. Through a detailed examination of fundamental mechanisms and behaviors, the paper explores the ability of nanoionic memristors and ion-gated transistors to emulate the intricate functions of neurons and synapses. Crucial performance metrics, such as reliability, energy efficiency, flexibility, and biocompatibility, are rigorously evaluated. Potential applications, challenges, and opportunities of using the neuromorphic computing technologies in emerging HMI technologies, are discussed and outlooked, shedding light on the fusion of humans with machines.

3.
Aging (Albany NY) ; 16(4): 4033-4051, 2024 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-38393692

RESUMO

Clear cell renal cell carcinoma (ccRCC) is the most common solid renal tumor. Therefore, it is necessary to explore the related tumor markers. LGALS3BP (galectin 3 binding protein) is a multifunctional glycoprotein implicated in immunity and cancer. Some studies have shown that LGALS3BP promotes the occurrence and development of tumors. However, their exact role in renal tumorigenesis remains unclear. Our study used a webserver to explore the mRNA expression and clinical features of LGALS3BP in ccRCC. Survival analysis showed that patients with high LGALS3BP expression had significantly worse OS and DFS than those with low LGALS3BP expression. LGALS3BP expression is significantly related to B cells, CD4+ T cells, macrophages, neutrophils, and dendritic cells. Furthermore, we determined that LGALS3BP is significantly associated with angiogenesis, stemness and proliferation in renal cancer. Three phenotypes may be associated with a poor prognosis. Genes related to proliferation, angiogenesis and stemness were derived from a Venn diagram of FGF2. FGF2 is negatively correlated with proliferation and positively correlated with angiogenesis. Finally, we screened for drugs that may have potential therapeutic value for ccRCC. The PCR results showed that the expression of LGALS3BP in the normal cell line was lower than that in the tumor cell lines. After LGALS3BP knockdown, the proliferation of 769-P and 786-O cells decreased. The present findings show that LGALS3BP is critical for ccRCC cell proliferation and may be a potential target and biomarker for ccRCC.


Assuntos
Carcinoma de Células Renais , Carcinoma , Neoplasias Renais , Humanos , Carcinoma de Células Renais/patologia , Fator 2 de Crescimento de Fibroblastos/metabolismo , Neoplasias Renais/patologia , Rim/patologia , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Linhagem Celular Tumoral , Carcinoma/genética , Prognóstico , Regulação Neoplásica da Expressão Gênica , Antígenos de Neoplasias/genética , Antígenos de Neoplasias/metabolismo
4.
Cytokine ; 176: 156514, 2024 04.
Artigo em Inglês | MEDLINE | ID: mdl-38277928

RESUMO

BACKGROUND: Inflammation is linked to coronavirus disease 2019 (COVID-19)-related heart failure (HF), but the specific mechanisms are unclear. This study aimed to assess the relationship between specific inflammatory factors, such as interleukin (IL)-1ß, IL-2, IL-4, IL-5, IL-6, IL-8, IL-10, IL-12, IL-17, interferon (IFN)-α, and IFN-γ, and COVID-19-related HF. METHODS: We retrospectively identified 212 adult patients with COVID-19 who were hospitalized at Shanghai Public Health Center from March 1 to May 30, 2022 (including 80 patients with HF and 132 without HF). High-sensitivity C-reactive protein (hs-CRP), procalcitonin (PCT), and inflammatory factors, including IL-1ß, IL-2, IL-4, IL-5, IL-6, IL-8, IL-10, IL-12, IL-17, IFN-α, and IFN-γ, were compared between patients with COVID-19 with and without HF. RESULTS: Patients with COVID-19 having and not having HF differed with regard to sex, age, hs-CRP, PCT, and IL-6 levels (p < 0.05). Logistic regression analysis indicated a significant positive association between IL and 6 and HF (odds ratio = 1.055; 95 % confidence interval: 1.019-1.093, p < 0.005). Sex, age, and hs-CRP were also associated with HF. Women had a greater risk of HF than men. Older age, higher levels of hs-CRP, and IL-6 were associated with a greater risk of HF. CONCLUSIONS: In patients with COVID-19, increased IL-6 levels are significantly associated with COVID-19-related HF.


Assuntos
COVID-19 , Insuficiência Cardíaca , Adulto , Feminino , Humanos , Masculino , Proteína C-Reativa/metabolismo , China , COVID-19/complicações , Interleucina-10 , Interleucina-12 , Interleucina-17 , Interleucina-2 , Interleucina-4 , Interleucina-5 , Interleucina-6 , Interleucina-8 , Estudos Retrospectivos
5.
Microb Biotechnol ; 17(1): e14372, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38010721

RESUMO

Root metabolites and soil microbial community structure in the rhizosphere play critical roles in crop growth. Here, we assessed the efficiency of conventional and tissue culture propagation methods in modulating the soil health and microbiota in the rhizosphere of sugarcane (Saccharum officinarum L.) plants. The seeding canes were obtained using newly planted and two-year ratooned canes propagated by conventional (CSN and CSR) or tissue culture (TCN and TCR) methods. Changes in soil fertility, root metabolites and soil microbial community structure in the rhizosphere of sugarcane plants obtained using these canes were assessed. The activities of soil ß-glucosidase and aminopeptidase, soil microbial biomass nitrogen, and abundances of soil beneficial microbes, both at phyla and genera levels, were significantly higher in the rhizosphere of sugarcane plants in TCN and TCR treatments than those in that of plants in CSN and CSR treatments. Furthermore, flavonoid and flavonol biosynthesis and alanine, aspartate and glutamate metabolism were significantly upregulated in the roots of TCR and TCN plants compared with those in the roots of CSN and CSR plants. These results suggest that the tissue culture propagation method is a sustainable method for sugarcane cultivation to improve soil fertility and health in sugarcane rhizosphere.


Assuntos
Microbiota , Saccharum , Solo/química , Rizosfera , Microbiologia do Solo , Bactérias/metabolismo , Raízes de Plantas , Receptores de Antígenos de Linfócitos T/metabolismo
6.
Small ; 20(7): e2305195, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37803472

RESUMO

Human gustatory system recognizes salty/sour or sweet tastants based on their different ionic or nonionic natures using two different signaling pathways. This suggests that evolution has selected this detection dualism favorably. Analogically, this work constructs herein bioinspired stimulus-responsive hydrogels to recognize model salty/sour or sweet tastes based on two different responses, that is, electrical and volumetric responsivities. Different compositions of zwitter-ionic sulfobetainic N-(3-sulfopropyl)-N-(methacryloxyethyl)-N,N-dimethylammonium betaine (DMAPS) and nonionic 2-hydroxyethyl methacrylate (HEMA) are co-polymerized to explore conditions for gelation. The hydrogel responses upon adding model tastant molecules are explored using electrical and visual de-swelling observations. Beyond challenging electrochemical impedance spectroscopy measurements, naive multimeter electrical characterizations are performed, toward facile applicability. Ionic model molecules, for example, sodium chloride and acetic acid, interact electrostatically with DMAPS groups, whereas nonionic molecules, for example, D(-)fructose, interact by hydrogen bonding with HEMA. The model tastants induce complex combinations of electrical and volumetric responses, which are then introduced as inputs for machine learning algorithms. The fidelity of such a trained dual response approach is tested for a more general taste identification. This work envisages that the facile dual electric/volumetric hydrogel responses combined with machine learning proposes a generic bioinspired avenue for future bionic designs of artificial taste recognition, amply needed in applications.

7.
ACS Nano ; 18(1): 515-525, 2024 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-38126328

RESUMO

Multifunctional intelligent wearable electronics, providing integrated physiological signal analysis, storage, and display for real-time and on-site health status diagnosis, have great potential to revolutionize health monitoring technologies. Advanced wearable systems combine isolated digital processor, memory, and display modules for function integration; however, they suffer from compatibility and reliability issues. Here, we introduce a flexible multifunctional electrolyte-gated transistor (EGT) that integrates synaptic learning, memory, and autonomous discoloration functionalities for intelligent wearable application. This device exhibits synergistic light absorption coefficient changes during voltage-gated ion doping that modulate the electrical conductance changes for synaptic function implementation. By adaptively changing color, the EGT can differentiate voltage pulse inputs with different frequency, amplitude, and duration parameters, exhibiting excellent reversibility and reliability. We developed a smart wearable monitoring system that incorporates EGT devices and sensors for respiratory and electrocardiogram signal analysis, providing health warnings through real-time and on-site discoloration. This study represents a significant step toward smart wearable technologies for health management, offering health evaluation through intelligent displays.


Assuntos
Dispositivos Eletrônicos Vestíveis , Reprodutibilidade dos Testes , Monitorização Fisiológica , Eletrônica , Frequência Cardíaca
8.
BMC Plant Biol ; 23(1): 427, 2023 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-37710150

RESUMO

To elucidate the mechanisms underlying the resistance to smut of different sugarcane cultivars, endophytic bacterial and fungal compositions, functions and metabolites in the stems of the sugarcane cultivars were analyzed using high-throughput sequencing techniques and nontargeted metabolomics. The results showed that the levels of ethylene, salicylic acid and jasmonic acid in sugarcane varieties that were not sensitive to smut were all higher than those in sensitive sugarcane varieties. Moreover, endophytic fungi, such as Ramichloridium, Alternaria, Sarocladium, Epicoccum, and Exophiala species, could be considered antagonistic to sugarcane smut. Additionally, the highly active arginine and proline metabolism, pentose phosphate pathway, phenylpropanoid biosynthesis, and tyrosine metabolism in sugarcane varieties that were not sensitive to smut indicated that these pathways contribute to resistance to smut. All of the above results suggested that the relatively highly abundant antagonistic microbes and highly active metabolic functions of endophytes in non-smut-sensitive sugarcane cultivars were important for their relatively high resistance to smut.


Assuntos
Saccharum , Saccharum/genética , Metabolismo Secundário , Metabolômica , Alternaria , Arginina , Grão Comestível
9.
Nanomaterials (Basel) ; 13(15)2023 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-37570590

RESUMO

The application of graphene-based catalysts in the electrocatalytic CO2 reduction reaction (ECO2RR) for mitigating the greenhouse effect and energy shortage is a growing trend. The unique and extraordinary properties of graphene-based catalysts, such as low cost, high electrical conductivity, structural tunability, and environmental friendliness, have rendered them promising materials in this area. By doping heteroatoms or artificially inducing defects in graphene, its catalytic performance can be effectively improved. In this work, the mechanisms underlying the CO2 reduction reaction on 10 graphene-based catalysts were systematically studied. N/B/O-codoped graphene with a single-atom vacancy defect showed the best performance and substantial improvement in catalytic activity compared with pristine graphene. The specific roles of the doped elements, including B, N, and O, as well as the defects, are discussed in detail. By analysing the geometric and electronic structures of the catalysts, we showed how the doped heteroatoms and defects influence the catalytic reaction process and synergistically promoted the catalytic efficiency of graphene.

10.
Quant Imaging Med Surg ; 13(8): 5468-5471, 2023 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-37581087
11.
PLoS One ; 18(8): e0290167, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37582116

RESUMO

In practical production, cane stems with buds are generally used as seed for propagation. However, long-terms cane stems only easily lead to some problems such as disease sensitivity, quality loss, etc. Recently, cane seedings, which are produced by tissue culture were used in sugarcane production, but few studies on cane health related to tissue culture seedings. Therefore, to evaluate the immunity and health of sugarcanes growing from different reproduction modes, the endophytic microbial compositions in cane roots between stem and tissue culture seedlings were analyzed using high-throughput techniques. The results showed that the endophytic microbial compositions in cane roots were significant differences between stem and tissue culture seedlings. At the genus level, Pantoea, Bacillus, Streptomyces, Lechevalieria, Pseudomonas, Nocardioides, unclassified_f__Comamonadaceae enriched as the dominant endophytic bacterial genera, and Rhizoctonia, Sarocladium, Scytalidium, Wongia, Fusarium, unclassified_f__Phaeosphaer, unclassified_c__Sordariom, unclassified_f__Stachybot, Poaceascoma, Microdochium, Arnium, Echria, Mycena and Exophiala enriched as the dominant endophytic fungal genera in cane roots growing from the tissue culture seedlings. In contrast, Mycobacterium, Massilia, Ralstonia, unclassified_f__Pseudonocardiacea, norank_f__Micropepsaceae, Leptothrix and Bryobacter were the dominant endophytic bacterial genera, and unclassified_k__Fungi, unclassified_f__Marasmiaceae, Talaromyces, unclassified_c__Sordariomycetes and Trichocladium were the dominant endophytic fungal genera in cane roots growing from stem seedlings. Additionally, the numbers of bacterial and fungal operational taxonomic units (OTUs) in cane roots growing from tissue culture seedlings were significantly higher than those of stem seedlings. It indicates that not only the endophytic microbial compositions in cane roots can be shaped by different propagation methods, but also the stress resistance of sugarcanes can be improved by the tissue culture propagation method.


Assuntos
Actinomycetales , Agaricales , Ascomicetos , Fungos não Classificados , Fusarium , Sordariales , Streptomyces , Bengala , Raízes de Plantas/microbiologia , Endófitos
12.
Sci Rep ; 13(1): 12645, 2023 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-37542141

RESUMO

In recent years, RNA methylation modification has been found to be related to a variety of tumor mechanisms, such as rectal cancer. Clear cell renal cell carcinoma (ccRCC) is most common in renal cell carcinoma. In this study, we get the RNA profiles of ccRCC patients from ArrayExpress and TCGA databases. The prognosis model of ccRCC was developed by the least absolute shrinkage and selection operator (LASSO) regression analysis, and the samples were stratified into low-high risk groups. In addition, our prognostic model was validated through the receiver operating characteristic curve (ROC). "pRRophetic" package screened five potential small molecule drugs. Protein interaction networks explore tumor driving factors and drug targeting factors. Finally, polymerase chain reaction (PCR) was used to verify the expression of the model in the ccRCC cell line. The mRNA matrix in ArrayExpress and TCGA databases was used to establish a prognostic model for ccRCC through LASSO regression analysis. Kaplan Meier analysis showed that the overall survival rate (OS) of the high-risk group was poor. ROC verifies the reliability of our model. Functional enrichment analysis showed that there was a obviously difference in immune status between the high-low risk groups. "pRRophetic" package screened five potential small molecule drugs (A.443654, A.770041, ABT.888, AG.014699, AMG.706). Protein interaction network shows that epidermal growth factor receptor [EGRF] and estrogen receptor 1 [ESR1] are tumor drivers and drug targeting factors. To further analyze the differential expression and pathway correlation of the prognosis risk model species. Finally, polymerase chain reaction (PCR) showed the expression of YTHN6-Methyladenosine RNA Binding Protein 1[YTHDF1], TRNA Methyltransferase 61B [TRMT61B], TRNA Methyltransferase 10C [TRMT10C] and AlkB Homolog 1[ALKBH1] in ccRCC cell lines. To sum up, the prognosis risk model we created not only has good predictive value, but also can provide guidance for accurately predicting the prognosis of ccRCC.


Assuntos
Carcinoma de Células Renais , Carcinoma , Neoplasias Renais , Humanos , Carcinoma de Células Renais/tratamento farmacológico , Carcinoma de Células Renais/genética , Metilação , Reprodutibilidade dos Testes , Imunoterapia , Prognóstico , RNA , tRNA Metiltransferases , Neoplasias Renais/tratamento farmacológico , Neoplasias Renais/genética , Homólogo AlkB 1 da Histona H2a Dioxigenase
13.
Chem Commun (Camb) ; 59(68): 10287-10290, 2023 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-37539814

RESUMO

We report a water-soluble AIEgen (TPAL) that can self-assemble into fluorescent organic nanoparticles for the ratiometric detection of mitochondrial DNA (mtDNA) parallel G-quadruplexes (G4s) with high selectivity, a low detection limit and photodynamic therapy (PDT) potential.


Assuntos
Quadruplex G , Fotoquimioterapia , Fármacos Fotossensibilizantes/farmacologia , Fármacos Fotossensibilizantes/uso terapêutico , Água , Corantes , Corantes Fluorescentes
14.
J Phys Chem B ; 127(21): 4800-4807, 2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-37196177

RESUMO

The catalytic mechanisms for the wild-type and the mutated Cu-only superoxide dismutase were studied using the hybrid density functional B3LYP and a quantum chemical cluster approach. Optimal protonation states of the active site were examined for each stage of the catalytic cycle. For both the reductive and the oxidative half-reactions, the arrival of the substrate O2•- was found to be accompanied by a charge-compensating H+ with exergonicities of -15.4 kcal·mol and -4.7 kcal·mol, respectively. The second-sphere Glu-110 and first-sphere His-93 were suggested to be the transient protonation site for the reductive and the oxidative half-reactions, respectively, which collaborates with the hydrogen bonding water chain to position the substrate near the redox-active copper center. For the reductive half-reaction, the rate-limiting step was found to be the inner-sphere electron transfer from the partially coordinated O2•- to CuII with a barrier of 8.1 kcal·mol. The formed O2 is released from the active site with an exergonicity of -14.9 kcal·mol. For the oxidative half-reaction, the inner-sphere electron transfer from CuI to the partially coordinated O2•- was found to be accompanied by the proton transfer from the protonated His-93 and barrierless. The rate-limiting step was found to be the second proton transfer from the protonated Glu-110 to HO2- with a barrier of 7.3 kcal·mol. The barriers are reasonably consistent with experimental activities, and a proton-transfer rate-limiting step in the oxidative half-reaction could explain the experimentally observed pH-dependence. For the E110Q CuSOD, Asp-113 was suggested to be likely to serve as the transient protonation site in the reductive half-reaction. The rate-limiting barriers were found to be 8.0 and 8.6 kcal·mol, respectively, which could explain the slightly lower performance of E110X mutants. The results were found to be stable, with respect to the percentage of exact exchange in B3LYP.


Assuntos
Prótons , Superóxido Dismutase , Oxirredução , Transporte de Elétrons , Modelos Teóricos
15.
Int Immunopharmacol ; 119: 110220, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37104914

RESUMO

OBJECTIVE: To explore the role of 14-3-3 protein and the Hippo and yes-associated protein 1 (YAP) signaling pathway in lipopolysaccharide (LPS)-induced vascular inflammation. METHODS: Human umbilical vein endothelial cells (HUVECs) and C57B6 mice were treated with LPS to establish cell and animal models of vascular inflammation. Lentiviral transfection, Western blot, qPCR, immunofluorescence, immunohistochemistry, co-immunoprecipitation, and enzyme-linked immunosorbent assays were used to measure inflammatory factors and expression of 14-3-3 protein and phosphorylation of YAP at S127. HUVECs and C57B6 mice were pretreated with a YAP inhibitor, Verteporfin, to observe changes in YAP expression and downstream vascular inflammation. RESULTS: LPS induced acute and chronic inflammatory responses in HUVECs and mice and upregulated the expression of several inflammatory factors. LPS also induced expression of 14-3-3 protein and phosphorylation of YAP at S127 in response to acute vascular inflammation and downregulated these markers in response to chronic vascular inflammation. Verteporfin reduced these LPS-induced effects on vascular inflammation. CONCLUSION: In chronic vascular inflammation, 14-3-3 protein is downregulated, which promotes inflammation by increasing Hippo/YAP nuclear translocation.


Assuntos
Proteínas 14-3-3 , Lipopolissacarídeos , Humanos , Camundongos , Animais , Verteporfina/farmacologia , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Fatores de Transcrição/metabolismo , Células Endoteliais da Veia Umbilical Humana/metabolismo , Inflamação
16.
Inorg Chem ; 62(16): 6323-6331, 2023 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-37043704

RESUMO

Luminescent Zn(II) complexes that respond to external stimuli are of wide interest due to their potential applications. Schiff base with O,N,O-hydrazone shows excellent luminescence properties with multi-coordination sites for different coordination modes. In this work, three salicylaldehyde hydrazone Zn(II) complexes (1, 2a, 2b) were synthesized and their stimuli-responsive behaviors in different states were explored. Only complex 1 exhibits reversible and self-recoverable photochromic and photoluminescence properties in solution. This may be due to the configuration eversion and the excited-state intramolecular proton transfer (ESIPT) process. In the solid state, 2a has obvious mechanochromic luminescence property, which is caused by the destruction of intermolecular interactions and the transformation from crystalline state to amorphous state. 2a and 2b have delayed fluorescence properties due to effective halogen bond interactions in structures. 2a could undergo crystal-phase transformation into its polymorphous 2b by force/vapor stimulation. Interestingly, 2b shows photochromic property, which can be attributed to the electron transfer and generation of radicals induced by UV irradiation. Due to different conformations and coordination modes, the three Zn(II) complexes show different stimuli-responsive properties. This work presents the multi-stimuli-responsive behaviors of salicylaldehyde hydrazone Zn(II) complexes in different states and discusses the response mechanism in detail, which may provide new insights into the design of multi-stimuli-responsive materials.

17.
Nat Commun ; 14(1): 2169, 2023 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-37061543

RESUMO

Dynamic machine vision requires recognizing the past and predicting the future of a moving object based on present vision. Current machine vision systems accomplish this by processing numerous image frames or using complex algorithms. Here, we report motion recognition and prediction in recurrent photomemristor networks. In our system, a retinomorphic photomemristor array, working as dynamic vision reservoir, embeds past motion frames as hidden states into the present frame through inherent dynamic memory. The informative present frame facilitates accurate recognition of past and prediction of future motions with machine learning algorithms. This in-sensor motion processing capability eliminates redundant data flows and promotes real-time perception of moving objects for dynamic machine vision.

19.
Am J Obstet Gynecol ; 229(1): 72-74, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-36933684

RESUMO

Uncontained power morcellation during laparoscopic myomectomy may spread tissue fragments or malignant cells into the abdominal cavity. Recently, various approaches to contained morcellation, have been adopted to retrieve the specimen. However, each of these methods has its own drawbacks. Intraabdominal bag-contained power morcellation adopts a complex isolation system, which prolongs the operation and increases medical costs. Contained manual morcellation via colpotomy or mini-laparotomy increases the trauma and the risk of infection. Contained manual morcellation via umbilical incision during single-port laparoscopic myomectomy may be the most minimally invasive and cosmetic approach. But the popularization of single-port laparoscopy is challenging because of technical difficulties and high costs. We have therefore, developed a surgical technique using 2 umbilical port-incisions (5 mm and 10 mm), which are merged into 1 large umbilical incision (25-30mm) for contained manual morcellation during specimen retrieval, and one 5mm incision in the lower left abdomen for an ancillary instrument. As demonstrated in the video, this technique significantly facilitates surgical manipulation using conventional laparoscopic instruments while still keeping the incisions minimal. It is also economical because the use of an expensive single-port platform and special surgical instruments is avoided. In conclusion, the merging of dual umbilical port-incisions for contained morcellation adds a minimally invasive, cosmetic, and economical option to laparoscopic specimen retrieval that would enrich a gynecologist's skill set, which is particularly relevant in a low-resource settings.


Assuntos
Laparoscopia , Morcelação , Miomectomia Uterina , Neoplasias Uterinas , Feminino , Humanos , Miomectomia Uterina/métodos , Morcelação/métodos , Neoplasias Uterinas/cirurgia , Neoplasias Uterinas/patologia , Laparoscopia/métodos , Abdome/patologia
20.
Anal Chem ; 95(14): 5903-5910, 2023 04 11.
Artigo em Inglês | MEDLINE | ID: mdl-36999978

RESUMO

Single-stranded DNA (ssDNA) allows flexible and directional modifications for multiple biological applications, while being greatly limited by their poor stability, increased folding errors, and complicated sequence optimizations. This greatly challenges the design and optimization of ssDNA sequences to fold stable 3D structures for diversified bioapplications. Herein, the stable pentahedral ssDNA framework nanorobots (ssDNA nanorobots) were intelligently designed, assisted by examining dynamic folding of ssDNA in self-assemblies via all-atom molecular dynamics simulations. Assisted by two functional siRNAs (S1 and S2), two ssDNA strands were successfully assembled into ssDNA nanorobots, which include five functional modules (skeleton fixation, logical dual recognition of tumor cell membrane proteins, enzyme loading, dual-miRNA detection and synergy siRNA loading) for multiple applications. By both theoretical calculations and experiments, ssDNA nanorobots were demonstrated to be stable, flexible, highly utilized with low folding errors. Thereafter, ssDNA nanorobots were successfully applied to logical dual-recognition targeting, efficient and cancer-selective internalization, visual dual-detection of miRNAs, selective siRNA delivery and synergistic gene silencing. This work has provided a computational pathway for constructing flexible and multifunctional ssDNA frameworks, enlarging biological application of nucleic acid nanostructures.


Assuntos
MicroRNAs , Nanoestruturas , Neoplasias , Humanos , DNA de Cadeia Simples , Conformação de Ácido Nucleico , Nanoestruturas/química , RNA Interferente Pequeno , Neoplasias/diagnóstico , Neoplasias/terapia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...